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Abstract

We provide a revealed preference characterization of expected utility

maximization in binary lotteries with prize-probability trade-offs. We start

by characterizing optimizing behavior when the empirical analyst exactly

knows the utility function or the probability function of winning. Next, we

consider the situation with both the probability function and utility func-

tion unknown. We show that in this case utility maximization has empirical

content when these functions are log-concave.

Keywords: expected utility maximization, prize-probability trade-offs, re-

vealed preference characterization, testable implications.

∗This paper replaces and extends our previous working paper “Equilibrium play in first price
auctions: Revealed preference analysis”. We also thank the reading group at the University of
Sussex for useful discussion.
†Department of economics, University of Leuven. E. Sabbelaan 53, B-8500 Kortrijk, Belgium.

E-mail: laurens.cherchye@kuleuven.be. Laurens Cherchye gratefully acknowledges the European
Research Council (ERC) for his Consolidator Grant 614221. Part of this research is financed by
the Fund of Scientific Research Flanders (FWO-Vlaanderen).
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1 Introduction

We analyze models of expected utility maximization in which the decision maker

(DM) faces a binary lottery that is characterized by a prize-probability trade-off.

In particular, we take a framework where a lottery yields a reward r − b with

probability P (b) and a payoff of zero with probability 1 − P (b). Here, the value

of r is exogenously given and P is a cumulative distribution function. The DM’s

problem is to choose the optimal value of b. In other words, she faces a trade-off

between the value of the reward and the probability of winning.

This type of decision problem occurs frequently in economics. A notable exam-

ple is the (independent private values, sealed-bid) first price auction where the DM

is one of the participants. In this case the prize of the lottery is given by the value

r of the object for the DM minus the DM’s bid b to win the auction. The DM can

choose to increase the probability of winning the auction (in a monotone equilib-

rium) by increasing her bid b, but this implies that the final value of winning the

auction, i.e. (r − b), decreases. In what follows, we do not explicitly consider the

strategic aspect of this game and concentrate mainly on the single-agent decision

problem. Under the assumption that players play a Bayesian Nash equilibrium,

the probability of winning, given the bid P (b), captures all the relevant informa-

tion for the the DM to choose her optimal bid. The first price auction is just one

instance fitting in our general set-up. We will discuss additional examples of often

studied decision problems characterized by prize-probability trade-offs in Section

2.

Our main contribution is that we develop a revealed preference approach to

characterize behavior that is expected utility maximizing under price-probability

trade-offs.1 A distinguishing and attractive feature of our revealed preference char-

acterizations is that they do not require a (non-verifiable) functional specification

of the optimization problem. They define testable conditions for optimizing be-

havior that are intrinsically nonparametric and, therefore, robust to specification

bias. To define these testable conditions, we will assume that the empirical analyst

1For compactness, we do not provide an empirical illustration of our theoretical characteri-
zation of expected utility maximization in the current paper. In an earlier version (Cherchye,
Demuynck, De Rock, and Freer, 2019) we used our revealed preference conditions to analyze
Neugebauer and Perote (2008)’s experimental data on first-price auctions.
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can use, for a given DM, a sequence of observations on rewards r (received when

winning the lottery) and on money amounts b (called “bids” in what follows) that

the DM is willing to forego in order to increase her probability of winning.

As a preliminary remark, the nonparametric revealed preference approach that

we present in this paper follows the tradition of Afriat (1967), Diewert (1973) and

Varian (1982). A sizeable literature has emerged on testing decision theories under

risk using this revealed preference approach. However, this literature has mainly

focused on choices involving Arrow-Debreu securities from linear budgets (see, for

example, Varian, 1983; Green and Osband, 1991; Kubler, Selden, and Wei, 2014;

Echenique and Saito, 2015; Chambers, Echenique, and Saito, 2016; Polisson, Quah,

and Renou, 2020), with a few papers focusing on the full mixture space (see, for

example, Kim, 1996). We complement these earlier studies by considering expected

utility maximization in a distinctively different decision setting.

Overview of our results. We start by assuming that the analyst perfectly

knows either the probability of winning P (as a function of b) or the DM’s utility

function U (as a function of r−b).2 For this set-up, we show that the assumption of

expected utility maximization generates strong testable implications. Particularly,

we derive a revealed preference characterization of optimizing behavior that takes

the form of a set of inequalities that are linear in unknowns. The characterization

defines necessary and sufficient conditions for the existence of a utility function

(when P is known) or a probability function (when U is known) such that the

DM’s observed decisions on b are consistent with expected utility maximization.

In many empirical settings, however, both P and U are unknown. Not very

surprisingly, we find that the assumption of optimizing behavior does not generate

any testable restrictions for observed behavior when not imposing any structure

on U and P . Interestingly, however, we also show that this negative conclusion

can be overcome by imposing minimalistic shape constraints that are often used

in the relevant literature. Specifically, we focus on the following three cases: (1)

P is strictly log-concave, (2) U is strictly log-concave, and (3) both P and U are

2Admittedly, the assumption that P is perfectly observed is rather demanding. Therefore, in
Appendix B we also present a statistical test derived from our testable conditions in Section 3
when P can (only) be estimated from a finite sample of observations.
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strictly log-concave. Log-concavity is a very weak assumption that is closely linked

to monotonicity (see, for example, Cox et al., 1988; Bagnoli and Bergstrom, 2005).

More specifically, log-concavity of U still allows the DM to be risk-loving but (only)

excludes extremely risk-loving behavior. Intuitively, log-concavity of U imposes a

single-crossing property of utility functions that is frequently used in game theory

and mechanism design (see, for example, Maskin and Riley, 2000). Similarly,

log-concavity of P is a minimal assumption that holds for most commonly used

distributions in the literature, making it again a fairly weak restriction.

For each of these models, we derive necessary and sufficient testable conditions

for expected utility maximization that are of the law-of-demand type. They require

respectively that (1) higher rewards r must lead to higher payoffs r− b, (2) higher

rewards r must lead to higher bids b, and (3) higher rewards r must lead to both

higher payoffs r − b and higher bids b. These results are in line with comparative

static results that have been documented in the literature. A notable implication

of our nonparametric characterizations is that the testable conditions are not only

necessary but also sufficient for expected utility maximization.

Importantly, these characterizations entail two additional conclusions. First,

they show that the assumption of expected utility maximization does have empir-

ical content even under minimalistic shape restrictions for P and/or U . Moreover,

as we will discuss in Section 5, even if the rewards r are unobserved, the above

comparative static results still enable partial identification of the reward struc-

ture when (only) using information on the observed bids. Second, our result for

scenario (1) shows that, for any log-concave distribution P and any data set with

payoffs r−b increasing in rewards r, we can find a utility functions U such that the

combination (P,U) generates this observed data set. Similarly, it follows from our

result for scenario (2) that, for any log concave utility function U and any data set

with bids b increasing in rewards r, we can construct a probability distributions

P such that (P,U) generates the data set. In other words, even if we assume that

either P or U is log-concave, it turns out to be empirically impossible to (partially)

identify more specific properties of these functions. These findings are similar in

spirit to those of Manski (2002, 2004) on the impossibility to separately identify

decision rules and beliefs.
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Outline. The remainder of this paper is structured as follows. Section 2 in-

troduces our theoretical set-up and notation. It also provides a more formal de-

scription of the above cited examples of decision problems that fit in our general

framework. Section 3 considers the case in which the empirical analyst knows

either the probability function P or the utility function U . Section 4 analyzes

the setting with both P and U unknown. Section 5 discusses the usefulness of

our theoretical results when the rewards r are unobserved. Section 6 presents our

concluding discussion.

2 Set-up and notation

As explained in the introductory section, we consider a setting where the DM can

win a reward r with a certain probability. We assume that r > 0 and r ≤ r for

some exogenously given r ∈ R. The DM can choose a bid b ∈ [0, r]. Choosing

a higher value of b increases the probability of winning the reward. We model

this through a latent random variable b̃ (unobserved by the DM) with cumulative

distribution function (cdf) P such that the award is won whenever b ≥ b̃. In other

words, the probability of winning is equal to P (b) = Pr(b̃ ≤ b). The downside of

increasing b is that the value of winning is decreasing with the bid. As such, the

DM obtains r − b if the reward is won (with probability P (b)), while the DM’s

payoff is zero if the reward is not won (with probability 1− P (b)).

The standard expected utility model assumes that the DM has a Bernoulli

utility function

U : [0, r]→ R+,

such that b solves:

max
b∈[0,r]

P (b) U(r − b), (1)

where we normalize the utility associated with zero payoff to zero, i.e. U(0) = 0.

We will assume throughout that P is continuous and strictly increasing on [0, r],

and that U is continuous and strictly increasing on R.3 Observe that we can

3For our results, the monotonicity and continuity properties are inherited from P to U and
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indeed restrict b ≤ r in this optimization problem, as any bid b > r gives negative

expected utility and is therefore dominated by a choice b = r, which gives zero

expected utility. Next, we consider P to be independent of r mainly to ease our

exposition. Our results in Section 3 (for known P or U) can be replicated for P

dependent on r without extra assumptions. However, replicating our results in

Section 4 (for unknown P and U) would require auxiliary assumptions when P

can depend on r.

Our general set-up applies to a wide variety of decision problems that are

frequently encountered in economics. We illustrate this by discussing in turn first

price auctions, crowdfunding games, posted price problems and principal-agent

problems.

First price auctions. In a first price auction, the DM (bidder) has a value r for

the object. Placing a bid of b decreases the value of winning the auction to r − b,
while it increases the probability of winning. In this case, the random variable b̃ is

the value of the highest bid of all other participants, and P (b) = Pr(b̃ ≤ b) is the

probability that the DM wins the auction. Thus, if we consider the Bayesian Nash

equilibrium, the cdf P is generated as the distribution of highest bids given the

equilibrium bidding of other players. As an implication, if we assume equilibrium

play, the DM must optimize her expected utility as in (1).

Crowdfunding games. A crowdfunding game is an example of a mechanism to

organize private provision of a public good.4 The participants in the game make

bids for the public good. If the sum of these bids is above a certain threshold,

then the public good is provided. Otherwise the payoff to all participants is zero.

This fits in our general set-up for the DM being a participant of the crowdfunding

game and r being the DM’s value of the public good. Placing a bid lowers the

vice versa. Particularly, we obtain readily similar revealed preference characterizations as in
Theorems 1 and 2 and 3 when relaxing a property of P (e.g., assuming that it is just increasing
instead of strictly increasing) and, simultaneously, the corresponding property of U (e.g., equally
assuming that it is increasing instead of strictly increasing).

4Similar games are discussed by Tabarrok (1998) and Zubrickas (2014). We here consider a
simplified version of the game in which there is no lottery reward and only refund of contributions.
In this sense, we are closer to Tabarrok (1998). However, we do allow for differentiated (and not
only binary) contributions, as in Zubrickas (2014).
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value of the public good to r − b when the public good is provided. Let t̃ be the

random variable capturing the sum of the bids of all other participants, and let t

be the threshold above which the public good is provided. When using b̃ = t− t̃,
we can define the probability of the public good being provided by:

Pr(b+ t̃ ≥ t) = Pr(t− t̃ ≤ b) = Pr(b̃ ≤ b) = P (b).

In the Bayesian Nash equilibrium of this crowdfunding game, the cdf P equals the

distribution of the sum of contributions of the other players as defined by their

equilibrium bidding. Thus, if we assume equilibrium play, the DM has to maximize

her expected utility as in (1).

Posted price problems. In a posted price problem, the DM (buyer) has a

valuation r for the traded good. In order to obtain the good, the DM posts a

price b at which she is willing to buy the good.5 The seller (second-mover) then

decides whether or not to accept this offer. The DM receives a reward of r − b if

the seller accepts, and a payoff of zero if the seller rejects. As such, the seller’s

decision is based on her (unobserved) value b̃ for the good, which we can assume

to be random from the buyer’s point of view. The seller will accept the offer if

and only if the posted price is at least as large as her reservation price b̃. In this

case, the probability of the trade is given by:

Pr(b̃ ≤ b) = P (b),

which is determined by the distribution of the seller’s reservation price. Thus, the

Perfect Bayesian Equilibrium generates the DM’s problem in which she maximizes

her expected utility as in (1) for this specification of P .

Principal-agent problems. In a principal-agent model, the DM (as principal)

can receive a reward of size r with a probability that depends on the effort e of the

agent. In order to stimulate the agent to exert effort, the principal can promise

a conditional bonus of b to the agent, which the agent only gets if the principal

5The literature also frequently considers the alternative version with the seller posting the
price. It is easily verified that this seller-posted price problem equally fits in general set-up.
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receives the prize. Thus, the DM’s payoff in case the effort is high enough equals

r − b. It is also natural to assume that e is an increasing function of b, say e(b),

and that the reward is received only if the value of e is above the value of some

random variable ẽ. Defining the random variable b̃ = e−1(ẽ), we can set:

Pr(ẽ ≤ e(b)) = Pr(b̃ ≤ b) = P (b).

The agent chooses the effort level that maximizes her utility while accounting for

the cost of effort. At the same time, the probability P (b) depends on b as the

agent’s utility is conditional on the bonus that is promised to her. Therefore, in a

Subgame Perfect Nash equilibrium, the DM maximizes her expected utility as in

(1), with the cdf P determined by the agent’s optimal effort provision.

3 When P or U is known

We assume that the empirical analyst observes a finite number of rewards and

bids for a given DM.6 As a first step of our analysis, we consider a setting where

the researcher either knows the cdf P or the utility function U . For these cases,

we derive the nonparametric revealed preference conditions for consistency with

expected utility maximization. A typical instance with observed U occurs when the

empirical analyst assumes a risk neutral DM. Next, as indicated in the introductory

section, a prime example of the case with observed P is the first price auction

of which the participants play a symmetric equilibrium, in which case P equals

the cdf of the player types. In Appendix B, we relax the assumption that P

is fully observable and (only) assume that the analyst can estimate the empirical

distribution of P by using a finite sample of observed winning probabilities. Under

this assumption we can develop a statistical test of expected utility maximization

by starting from our results in the current section. In Section 4, we will focus on

the case where both P and U are unobserved.

Rationalizability. We assume that the empirical analyst observes a DM who

decides T times on the value of the bid b for various values of the reward r. This

6We discuss the case of unobserved rewards in Section 5.
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defines a data set

D = (rt, bt)Tt=1,

which contains a return rt > 0 and corresponding bid bt ∈ [0, rt] for each observa-

tion t ≤ T .

For a given cdf P and a utility function U , we say that the data set D is

(P,U)-rationalizable if the observed bids bt maximize the expected utility of the

DM given the primitives P and U . This yields the next definition.

Definition 1. For a given cdf P and utility function U , a data set D = (rt, bt)Tt=1

is (P,U)-rationalizable if U(0) = 0 and, for all observations t = 1, . . . , T ,

bt ∈ argmax
b∈[0,rt]

P (b)U(rt − b).

The following theorem provides the revealed preference conditions for a data

set D to be rationalizable if the researcher knows either P (but not U) or U (but

not P ).7

Theorem 1. Let D = (rt, bt)Tt=1 be a data set.

1. Let P be a cdf. Then, there exists a utility function U such that the data set

D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

(b) there exist numbers U t > 0 such that, for all observations t, s = 1, . . . , T ,

P (bt)U t ≥ P (rt − rs + bs)U s.

2. Let U be a utility function. Then, there exists a cdf P such that the data set

D = (rt, bt)Tt=1 is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . T , bt < rt, and

7Appendix A contains the proofs of our main theoretical results. We slightly abuse notation
in Theorem 1 by assuming that P (x) = 0 if x < 0
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(b) there exists numbers P t > 0 such that, for all observations t, s =

1, . . . , T ,

P tU(rt − bt) ≥ P sU(rt − bs).

Conditions 1.a and 1.b of Theorem 1 present a set of inequalities that give

necessary and sufficient conditions for rationalizability when the cdf P is given.

The inequalities in 1.b are linear in the unknown numbers U t, which makes them

easy to verify. Intuitively, every number U t represents the utility of winning the

auction in period t, i.e. U t = U(rt − bt). Further, condition 1.b corresponds to

the individual’s maximization problem in Definition 1. In particular, the expected

utility of choosing the observed bid bt should be at least as high as the expected

utility of making any other bid, including the bid rt − rs + bs. This yields the

condition

P (bt)U t = P (bt)U(rt − bt)

≥ P (rt − rs + bs)U(rt − rt + rs − bs)

= P (rt − rs + bs)U s.

Next, conditions 2.a and 2.b present a set of inequalities that give necessary and

sufficient conditions for rationalizability when the utility function U is given. In

this setting, the numbers P t can be interpreted as the probabilities of winning

if the bid equals bt, i.e. P t = P (bt). It is required that the expected utility of

choosing the bid bt is at least as high as the expected utility of choosing another

bid bs, which yields

P tU(rt − bt) = P (bt)U(rt − bt),

≥ P (bs)U(rt − bs) = P sU(rt − bs).

This shows that necessity of the conditions 1.a-1.b and 2.a-2.b in Theorem 1 is

relatively straightforward and may seem a rather weak implication. Interestingly,

however, Theorem 1 states that data consistency with these condition is not only

necessary but also sufficient for rationalizability. Particularly, in Appendix A.1 we
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provide a constructive proof that specifies a data rationalizing utility function U

and a data rationalizing cdf P based on the conditions in statements 1 and 2 of

Theorem 1.

Empirical content. We conclude this section by illustrating the empirical con-

tent of the rationalizability conditions in Theorem 1. Particularly, we show that

the conditions can be rejected as soon as the data set D contains (only) two obser-

vations. First, for conditions 1.a-1.b we assume a data set D with the observations

t, s such that rs − bs, rt − bt, rt − rs + bs, and rs − rt + bt are all strictly positive

and

P (bt) =
1

10
P (rt − rs + bs) =

1

4
,

P (bs) =
1

3
P (rs − rt + bt) =

1

2
.

Then, condition 1.b in Theorem 1 requires that there exists strictly positive U t

and U s such that

1

10
U t ≥ 1

4
U s ⇔ U t

U s
≥ 2.5, and

1

2
U s ≥ 1

3
U t ⇔ U t

U s
≤ 1.5,

which is impossible. We conclude that the data set is not rationalizable.

Next, for conditions 2.a-2.b we assume that U(x) = x, which means that utility

is linear, and that both rt − bt and rs − bs are strictly positive. Then, we must

have

P t

P s
≥ rt − bs

rt − bt
and

P s

P t
≥ rs − bt

rs − bs
,

for any two observations t and s. Since at least one of the two right hand sides
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must be stirctly positive, it must hold that

1 ≥ rt − bs

rt − bt
rs − bt

rs − bs

⇔(rt − bt)(rs − bs) ≥ (rt − bs)(rs − bt)

⇔− btrs − rtbs ≥ −bsrs − btrt

⇔(rs − rt)(bs − bt) ≥ 0.

This is violated as soon as rt > rs and bs > bt (or vice versa).

4 When P and U are unknown

We next turn to the instance in which both the cdf P and utility function U are

unknown to the empirical analyst. We start by a negative result: if no structure

is imposed on P and U , then any data set D is rationalizable (i.e. expected utility

maximization has no empirical content). Subsequently, we show that this negative

conclusion can be overcome by imposing a (strict) log-concavity condition on P or

U or on both. As discussed in the Introduction, the assumption of log-concavity

is a natural candidate to impose minimal structure on the decision problem.

A negative result. A natural first question is whether the assumption of ex-

pected utility maximization generates testable implications if we do not impose

any structure on P or U . The following corollary shows that the answer is negative.

Corollary 1. Let D = (rt, bt)Tt=1 be a data set. If bt < rt for all observations t,

then there always exists a cdf P and a utility function U such that D is (P,U)-

rationalizable.

We can show this negative conclusion by using the cdf P (b) = eb−r, which is a

continuous and strictly increasing cdf on [0, r]. This function satisfies P (bt) > 0

for all t, which makes that condition 1.a of Theorem 1 is satisfied. Thus, to

conclude rationalizability of D we only need to verify condition 1.b in Theorem 1.

Specifically, it suffices to construct numbers U t > 0 such that, for all t, s,

P (bt)U t = eb
t−rU t ≥ P (rt − rs + bs)U s = er

t−rs+bs−rU s,
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We meet this last inequality requirement when specifying U t = er
t−bt > 0 for all

observations t, as this gives

P (bt)U t = eb
t−rer

t−bt = er
t−r = er

t−rs+bs−rer
s−bs = P (rt − rs + bs)U s.

A crucial aspect of this rationalizability argument is that we have used a cdf P

that is log-linear. In such a case, we can always set the utility function U to be

equally log-linear on a suitable interval of [0, r]. Such a combination of P and U

rationalizes any data set D, as any choice of b < r gives the same level of expected

utility (i.e. er
t−r).

In what follows, we will show that we can overcome the negative result in

Corollary 1 when imposing strict log-concavity on P or U , thereby also excluding

the log-linear specifications. As we will argue, this minimal structure suffices to

give specific empirical content to the hypothesis of expected utility maximization.

Log-concave P or U . We first consider the case with P strictly log-concave.

Take any two observations t and s from a data set D. When assuming that the

cdf P is known but not the utility function U , condition 1.b of Theorem 1 requires

P (bt)U t ≥ P (rt − rs + bs)U s, and

P (bs)U s ≥ P (rs − rt + bt)U t.

For P (rt − rs + bs) > 0 and P (rs − rt + bt) > 0, we can take the log of both sides

to obtain

p(rt − rs + bs)− p(bt) ≤ ut − us, and

p(rs − rt + bt)− p(bs) ≤ us − ut,

where p = lnP and u = lnU . Adding up these two conditions gives,

p(rt − rs + bs)− p(bs) ≤ p(bt)− p(rs − rt + bt).
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Without loss of generality, we can assume rt ≥ rs. Using ∆ = rt − rs ≥ 0, we get

p(∆ + bs)− p(bs) ≤ p(bt)− p(bt −∆).

Because the cdf P is strictly log-concave, the function p is strictly concave. Then,

the above inequality will be satisfied if and only if ∆ + bs ≥ bt or, equivalently,

rt − bt ≥ rs − bs.

Thus, strict log-concavity of P requires that, if the rewards r weakly increase (i.e.

rt ≥ rs), then the prizes r − b must also weakly increase (i.e. rt − bt ≥ rs − bs).
In Appendix A.2, we show that this testable implication is not only necessary but

also sufficient for rationalizability of the data set D.

We can develop an analogous argument when U is strictly log-concave. In

this case, we obtain that a weak increase in the rewards r (i.e. rt ≥ rs) must

imply a weak increase in the bids b (i.e. bt ≥ bs). Again, this requirement is both

necessary and sufficient for rationalizability. The following theorem summarizes

our conclusions.

Theorem 2. Let D = (rt, bt)Tt=1 be a data set.

1. Let P be a strictly log-concave cdf. Then, there exists a utility function U

such that the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

(b) for all observations t, s = 1, . . . , T , rt ≥ rs implies rt − rs ≥ bt − bs.

2. Let U be a strictly log-concave utility function. Then, there exists a cdf P

such that the data set D is (P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . T , bt < rt, and

(b) for all observations t, s = 1, . . . , T , rt ≥ rs implies bt ≥ bs.

The rationalizability conditions in Theorem 2 are of the law-of-demand type

and have a clear economic interpretation. If P is strictly log-concave, then any

increase in the reward r must lead to an increase in the prize r− b that is obtained
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when winning the lottery. Analogously, if U is strictly log-concave, then any

increase in the reward r must lead to an increase in the optimal bid b. More

surprisingly, these are the only testable implications for (P,U)-rationalizability.

They fully exhaust the empirical content of expected utility maximization under

the stated observability conditions.

Importantly, the conditions in statement 1 of Theorem 2 are independent of

a particular form for the cdf P . In other words, as soon as the data set D is

(P,U)-rationalizable by some utility function U for a strictly log-concave cdf P ,

it is rationalizable for any strictly log-concave P that satisfies P (bt) > 0. This is

a clear non-identification result. Apart from the property of strict log-concavity

and the fact that the observed bids must lead to strictly positive probabilities, we

will never be able to recover any additional property of the function P .

The same non-identification conclusion holds for the rationalizability conditions

in statement 2 of Theorem 2. As soon as the data set D is (P,U)-rationalizable

for some strictly log-concave utility function U , it is rationalizable for any strictly

log-concave utility function U .

Log-concave P and U . We conclude this section by considering the case where

both P and U are assumed to be strictly log-concave. In such a situation, ra-

tionalizability requires that the data set D satisfies simultaneously the conditions

in statements 1 and 2 of Theorem 2. As we state in the following theorem, this

requirement is both necessary and sufficient for (P,U)-rationalizability.

Theorem 3. Let D = (rt, bt)Tt=1 be a data set. Let P be a strictly log-concave

cdf and let U be a strictly log-concave utility function. Then, the data set D is

(P,U)-rationalizable if and only if,

(a) for all observations t = 1, . . . , T , P (bt) > 0 and bt < rt, and

(b) for all observations t, s = 1, . . . , T ,

rt ≥ rs implies
(
bt ≥ bs and rt − bt ≥ rs − bs

)
.

Interestingly, this (nonparametric) characterization naturally complies with ex-

isting theoretical findings in the (parametric) literature on auctions. In that liter-
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ature, it is well-established that, when both P and U are strictly log-concave (and

satisfy some additional smoothness conditions), the DM’s (unique) optimal bid b

is increasing in r with a slope less than one (see, for example, Cox and Oaxaca

(1996)). We equally obtain that rt ≥ rs requires bt ≥ bs. In addition, in our non-

parametric setting the slope condition corresponds to rt − rs ≥ bt − bs for rt ≥ rs.

From Theorem 3, we conclude that these conditions are not only necessary but also

sufficient for rationalizability by a strictly log-concave cdf and strictly log-concave

utility function.

5 When rewards are unobserved

So far we have assumed that the rewards r are observed by the empirical analyst.

This assumption holds well in experimental settings, where the exogenous variables

are usually under the control of the experimental designer. However, in a real life

setting this type of data set is often not available. From this perspective, it is

interesting to investigate the usefulness of our above theoretical results in settings

where the rewards r are unobserved.

In what follows, we start by showing that the model of expected utility maxi-

mization no longer has testable implications in such a case. This conclusion holds

even when either the cdf P or the utility function U is perfectly observable. For

compactness, we will only provide the argument for P observed and U unobserved,

but the reasoning for U observed and P unobserved proceeds analogously. Impor-

tantly, however, this non-testability result does not imply that it is impossible to

identify bounds on the rewards that are consistent with the observed bids under

the assumption of rationalizability. We will show this by discussing the (partially)

identifying structure that rationalizable behavior imposes on the unobserved re-

wards.

A non-testability result. We consider a setting where the empirical analyst

only observes a finite number of bids (bt)Tt=1. Further, we assume that the empir-

ical analyst knows the true cdf P but not the utility function U . For simplicity,

we assume that P (bt) > 0 for all observations t. If this last condition were vio-

lated, the bids would violate condition 1.a in Theorem 1 and, thus, the observed
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behavior would not be (P,U)-rationalizable. To address the issue of testability,

we must characterize a finite collection of rewards (rt)Tt=1 such that the data set

D = (rt, bt)Tt=1 together with P satisfies the rationalizability conditions 1.a and 1.b

in Theorem 1.

More formally, we must define (rt)Tt=1 such that bt < rt for all t and there exist

numbers U t > 0 such that, for all observations s, t,

P (bt)U t ≥ P (rt − rs + bs)U s.

We will show that, for any (bt)Tt=1 and cdf P , we can always specify such a set

(rt)Tt=1, which effectively implies non-testability of expected utility maximization.

Let r be strictly bigger than maxt∈{1,...,T} b
t, and take any ∆ > 0 that satisfies

∆ ∈
]
0, r̄ − max

t∈{1,...,T}
bt
[
.

For every observation t = 1, . . . , T , we then consider the value rt = bt + ∆, which

is contained in [0, r[. This specification of the rewards ensures rt− bt = ∆, i.e. the

payoff when winning is the same for each observation t. Furthermore, for all t, s,

we let U t = U s = 1. It then follows that

P (bt)U t = P (bt) and P (rt − rs + bs)U s = P (bt),

which implies that the rationalizability condition 1.b in Theorem 1 is trivially

satisfied. We thus obtain the following non-testability result.

Corollary 2. For every data set D = (bt)Tt=1 and cdf P such that P (bt) > 0 for

all observations t, there exist values (rt)Tt=1 and a utility function U such that the

data set D′ = (rt, bt)Tt=1 is (P,U)-rationalizable.

Partial identification of rewards. Importantly, the negative conclusion in

Corollary 2 does not imply that it is impossible to identify the underlying val-

ues rt that (P,U)-rationalize the observed behavior. Since our characterizations

in Theorems 1, 2 and 3 define necessary and sufficient conditions for (P,U)-

rationalizability, they can still be used to partially identify the distribution of
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rewards. This (partially) identifying structure defines the strongest possible (non-

parametric) restrictions on the unobserved rewards for the given assumptions re-

garding U and P .

Let us first consider identification on the basis of Theorem 1. Assuming P (bt) >

0 for all observations, we have for any two observations t and s that the values rt

and rs providing a (P,U)-rationalization for some U must satisfy the inequality:

P (rt − rs + bs)

P (bt)

P (rs − rt + bt)

P (bs)
≤ Ut
Us

Us
Ut

= 1,

which puts restrictions on the reward differences rt − rs. In general, these restric-

tions will depend on the shape of the cdf P .

This illustrates that, generically, the rewards rt can only be partially identified,

meaning that there are multiple values of (rt)Tt=1 that satisfy the rationalizability

restrictions. As an implication, the distribution of rewards cannot be uniquely

recovered when only using information on P . This may seem to contradict the vast

literature on auction theory that focuses on identifying the distribution of rewards

from the distribution of bids (see, for example, Athey and Haile, 2007). However,

these existing identification results all rely on additional functional structure that

is imposed on the utility function U . By contrast, our result in Theorem 1 is

nonparametric in nature, and only assumes that U is strictly increasing.

Next, if the empirical researcher does not know P but assumes that it is strictly

log-concave, then we can use statement 1 of Theorem 2 to partially identify the

rewards. Specifically, these rewards must satisfy bt < rt and, in addition:

rt − rs ≥ 0 implies rt − rs ≥ bt − bs.

This last statement is equivalent to:

bt > bs implies (rt − rs ≥ bt − bs or rt − rs < 0),

which again puts bounds on the reward differences rt − rs.
Similarly, if U is assumed to be strictly log-concave but P is unconstrained,
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then statement 2 of Theorem 2 imposes bt < rt and:

rt ≥ rs implies bt ≥ bs.

This condition can be rephrased as:

bt > bs implies rt − rs > 0,

which defines restrictions on the sign of rt − rs.
Finally, if we assume that both P and U are strictly log-concave, then Theo-

rem 3 requires bt < rt and:

rt ≥ rs implies (bt ≥ bs and rt − bt ≥ rs − bs),

This is equivalent to:

bt > bs implies rt − rs ≥ bt − bs,

which once more specifies restrictions on rt − rs.
We conclude with a simple example that illustrates the application of these

identification constraints to retrieve information on latent rewards. Specifically,

we assume a data set with four observations (i.e. T = 4) containing the bids

b1 = 1, b2 = 4, b3 = 8 and b4 = 10. Then, if we assume that both P and U are

strictly log-concave, (P,U)-rationalizability imposes the restrictions

r1 > 1,

r2 ≥ r1 + 3,

r3 ≥ r2 + 4,

r4 ≥ r3 + 2.

It follows from our argument that any rewards r1, r2, r3 and r4 satisfying these

constraints will provide a (P,U)-rationalization of the observed behavior. This

clearly shows the partially informative nature of our nonparametric identification

results.
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6 Concluding discussion

We provided a nonparametric revealed preference characterization of expected util-

ity maximization in binary lotteries with trade-offs between the final value of the

prize and the probability of winning the prize. We have assumed an empirical

analyst who observes a finite set of rewards r and bids b for the DM under study.

We started by characterizing optimizing behavior when the empirical analyst also

perfectly knows either the probability distribution of winning P (as a function of

b) or the DM’s utility function U (as a function of r − b).
In a following step, we considered the case where both functions U and P

are fully unknown. For this setting, we first showed that any observed bidding

behavior is consistent with expected utility maximization if no further structure is

imposed on these unknown functions. However, we also established that imposing

log-concavity restrictions does give empirical bite to the hypothesis of expected

utility maximization. Specifically, we derived testable implications of the law-of-

demand type when either the probability distribution P or the utility function U

is assumed to be log-concave. Log-concavity of P imposes that rewards and final

prizes should go in the same direction, and log-concavity of U requires that rewards

and bids must be co-monotone. Interestingly, these co-monotonicity properties

fully exhaust the empirical content of expected utility maximization under the

stated log-concavity assumptions.

Finally, while our main focus was on testing expected utility maximization

when both rewards r and bids b are observed, we have also considered the use of

our results in the case where the rewards are no longer observed (which is often

relevant in non-experimental empirical settings). On the negative side, we have

shown that expected utility maximization is no longer testable in such a case, even

if P or U is fully known. On the positive side, we have demonstrated that our

characterizations do impose partially identifying structure on the rewards r that

can rationalize the observed behavior in terms of expected utility maximization.

An interesting avenue for future research consists of extending our characteri-

zations by relaxing or strengthening our assumptions regarding individual prefer-

ences. For example, we may consider the weaker assumption that the DM’s utility

function U is continuous and satisfies first-order stochastic dominance. More for-
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mally, this means that the individual’s utility is increasing in both the final prize

r−b and the probability of winning P (b). This extension would lead to a test of ex-

pected utility maximization for preferences that (only) satisfy first order stochastic

dominance.

Next, follow-up research may fruitfully focus on extending our results towards

a broader range of decision problems characterized by prize-probability trade-offs.

For instance, an interesting alternative application concerns contest or all-pay

auctions. The key difference between this setting and our current set-up is that

the DM has to pay the bid even if she loses the auction. Thus, increasing the

probability of winning decreases not only the DM’s potential prize but also her

payoff when she does not get the prize. Another possible application pertains to the

double-auction bilateral trade mechanism. This mechanism differs from the posted

price model presented in Section 2 in that the seller and the buyer simultaneously

post a price. Trade occurs at the average of these two prices if the seller’s price

does not exceed the buyer’s price, while there is no trade otherwise. Once more,

the DMs face a clear prize-probability trade-off as posting a higher/lower price

increases the probability of trade for the buyer/seller. However, a main difference

with our set-up is that the potential prize becomes stochastic, as it depends on

the (randomly) posted price of the other party.
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A Proofs

A.1 Proof of Theorem 1

Statement 1: P is known but U is not.

(⇒) Let D = (rt, bt)Tt=1 be (P,U)-rationalizable. Let us first derive condition 1.a.

Given that P is strictly increasing on [0, r], P (bt) can only be zero if bt = 0. Then,

the expected utility of choosing bt = 0 is given by:

P (0)U(rt) = 0.

Notice that, as U is strictly increasing and U(0) = 0, we have that U(rt) > 0.

Given continuity of U and the fact that P is strictly increasing, there must exist

a ε > 0 such that P (ε) > 0 and U(rt − ε) > 0. As such:

P (ε)U(rt − ε) > 0,

which means that bt = 0 can never be an optimal choice.

Next, if bt = rt, and consequentially U(rt − bt) = U(0) = 0, we have that:

P (rt)U(0) = 0.

Notice that P (rt) > 0 as rt > 0. Given continuity of P and the fact that U is

strictly increasing, there must exist a ε such that:

P (rt − ε)U(ε) > 0.

Again this implies that bt = rt can never be an optimal bid.

Finally, to derive condition 1.b, let U t = U(rt − bt) > 0. Then, by optimality

of bt, we have that:

P (bt)U t = P (bt)U(rt − bt),

≥ P (rt − (rs − bs))U(rt − (rt − rs + bs)),

= P (rt − rs + bs)U s,
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which is exactly condition 1.b.

(⇐) To prove sufficiency, we construct a regular Bernoulli utility function U : R→
R that rationalizes the data set. Define:

U(x) = min

{
αx, min

t=1,...,T

{
U t P (bt)

P (rt − x)
s.t. P (rt − x) > 0

}}
, (2)

where we choose:

α > max
t

U t

rt − bt
. (3)

Notice that U(x) is well-defined (i.e. finite valued), continuous and strictly in-

creasing as it is the minimum of a finite number of strictly increasing, continuous

functions. Also, for all observations t:

0 < U tP (bt)

P (rt)
,

which follows from the fact that P (bt) > 0, strict monotonicity of P and U t > 0.

As such, we have U(0) = α0 = 0.

Next, for all t we have U(rt − bt) = U t. Indeed, from the definition, we

immediately obtain the inequality U(rt − bt) ≤ U t and, by assumption (3), we

have U t < α(rt − bt). If the inequality would be strict, i.e. U(rt − bt) < U t, then

there must be an observation s such that:

U s P (bs)

P (rs − rt + bt)
< U t.

This, however, contradicts condition 1.b.

Finally, let us show that the data set D = (rt, bt)Tt=1 is (P,U)-rationalizable by

the function U(x) defined in (2). Consider any b ∈ [0, rt], then we have:

P (b)U(rt − b) ≤ P (b)U tP (bt)

P (b)
= P (bt)U t.

Statement 2: U is known but P is not.

(⇒) Let D = (rt, bt)Tt=1 be (P,U)-rationalizable. As in our proof of statement 1,
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we can show that bt < rt for all t, which obtains condition 2.a. To derive condition

2.b, let us set P t = P (bt). As in our proof of statement 1, we can show that

P t > 0. Then, choosing bt should provide at least as much utility as choosing bs.

As such:

P tU(rt − bt) = P (bt)U(rt − bt) ≥ P (bs)U(rt − bs) = P sU(rt − bs),

which obtains condition 2.b.

(⇐) To prove sufficiency, we need to construct a cdf P . Define the function:

V (b) = min

{
αb, min

t=1,...,T

{
P tU(rt − bt)

U(rt − b)
s.t. rt > b

}}
, (4)

where we choose:

α > max
t

P t

bt
. (5)

Notice that V (b) is well-defined (i.e. finite valued), non-negative, continuous, and

strictly increasing as it is the minimum of a finite number of strictly increasing,

continuous functions. Given this, define:

P (b) =
V (b)

V (r)
,

which obtains that P is a cdf on [0, r].

Next, for all t we have V (bt) = P t. Indeed, as rt > bt, we have that V (bt) ≤ P t.

If the inequality is strict, then P t < αbt (by condition (5)) implies that there is an

observation s such that:

V (bt) = P sU(rs − bs)
U(rs − bt)

< P t.

This, however, contradicts condition 2.b.

Let us finish the proof by showing that the data set D = (rt, bt)Tt=1 is (P,U)-
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rationalizable. If not, then there is a b ∈ [0, rt] such that:

P (b)U(rt − b) > P (bt)U(rt − bt) =
P t

V (r)
U(rt − bt).

This inequality requires that U(rt − b) > 0, which implies that b < rt. As such,

V (b) ≤ P t U(rt−bt)
U(rt−b) . Given this:

P (b)U(rt − b) ≤ P t

V (r)

U(rt − bt)
U(rt − b)

U(rt − b) =
P t

V (r)
U(rt − bt),

a contradiction.

A.2 Proof of Theorem 2

In order to give the proof, we need to introduce some definitions and notation.

A directed network G = (T,E) consists of a finite set of nodes T and edges

E ⊆ T × T . An edge e ∈ E is called an incoming edge for the node t if e = (s, t)

for some s ∈ T and it is called an outgoing edge if e = (t, s) for some s ∈ T . Two

nodes t, s are connected if there is a sequence of edges

e1 = (t, n1), e2 = (n1, n2), . . . ek = (nk−1, s),

connecting t to s. We call e1, . . . , ek a path from t to s.

A cycle C = (e1, . . . , ek) on the network G consists of a collection of edges such

that

e1 = (n1, n2), e2 = (n2, n3), . . . ek = (nk, n1).

We call {n1, . . . , nk} the nodes of the cycle and k the length of the cycle. For a

node ni in the cycle , ni+1 is called the successor of ni if i < k and n1 if i = k.

Similarly, ni−1 is called the predecessor of ni if i > 1 and nk if i = 1. We also

denote the successor of ni as ni+ and its predecessor as ni−.

To start, let us give some preliminary results.

Preliminary results
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Lemma 1. Let P be a cdf and let D = (rt, bt)Tt=1 be a data set such that P (bt) > 0

and bt < rt for all t. Then, there exists a utility function U such that D is (P,U)-

rationalizable if and only if, for all t, there exists numbers ut such that, for all t, s

with P (rt − rs + bs) > 0,

p(rt − rs + bs)− p(bt) ≤ ut − us,

where p(x) = ln(P (x)).

Proof. (⇒) LetD be (P,U)-rationalizable. Then, from condition 1.b in Theorem 1,

we know there exist number U t > 0 such that, for all t, s:

P (bt)U t ≥ P (rt − rs + bs)U s.

If P (rt − rs + bs) > 0 we can take logs on both sides, which gives:

p(rt − rs + bs)− p(bt) ≤ ut − us,

as we wanted to show.

(⇐)Assume that there are numbers ut such that, for all t, s with P (rt−rs+bs) > 0:

p(rt − rs + bs)− p(bt) ≤ ut − us.

Taking exponents on both sides gives P (rt − rs + bs)U s ≤ P (bt)U t shows that

condition 1.b of Theorem 1 holds in the case where P (rt − rs + bs) > 0. For the

case where P (rt − rs + bs) = 0 then condition 1.b is always satisfied as the left

hand side is then equal to zero. Applying Theorem 1 shows that there exists a

utility function U such that D is (P,U)-rationalizable.

The following Lemma is close in spirit to the results of Rochet (1987) and

Castillo and Freer (2016).

Lemma 2. Let P be a cdf and let D = (rt, bt)Tt=1 be a data set such that P (bt) > 0

and bt < rt for all t. Then, there exists a utility function U such that D is (P,U)-

rationalizable if and only if, for all cycles C on the network G = (T, T ×T ), which
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satisfy P (rt − rt+ + bt+) > 0 for all nodes t, we have:∑
t∈C

p(rt − rt+ + bt+)− p(bt+) ≤ 0.

Proof. (⇒) From Lemma 1 we have that there are numbers ut such that, for all

nodes t of C:

p(rt − rt+ + bt+)− p(bt) ≤ ut − ut+.

Summing the left and right hand sides over all nodes t of the cycle C gives:

0 ≥
∑
t∈C

(
p(rt − rt+ + bt+)− p(bt)

)
=
∑
t∈C

(
p(rt − rt+ + bt+)− p(bt+)

)
.

(⇐) Assume m is the node in the cycle with the highest value rm. It follows that,

for all nodes t in the cycle:

rm − rt + bt > 0,

so by strict monotonicity of P , P (rm − rt + bt) > 0. Let E be the set of edges

(t, s) such that p(rt − rs + bs) > 0. Let Pt be the set of all paths on the graph

G′(N,E) that start at m and end at t. Notice that Pm includes the path (m,m).

Given that p(rm− rt + bt) > 0 exists for all nodes t, the set Pt is non-empty. Now

define, for all t:

ut = min
π∈Pt

∑
(s,s+)∈π

p(bs)− p(rs − rs+ + bs+).

Because of the condition in the lemma, an optimal solution to this problem will

be path that does not have a cycle. Indeed, if a path includes a cycle, this makes

the right hand side only larger. This shows that the minimum is bounded from

below and, therefore, the value ut is well-defined.

Also, if P (rt − rs + bs) > 0 then, for any path in Pt, we can create a path in

Ps by adding the edge (t, s). Therefore, for all s, t:

us ≤ ut + p(bt)− p(rt − rs + bs).
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Using Lemma 1, we can conclude that the data set D is (P,U)-rationalizable for

some utility function U .

Statement 1: P is strictly log-concave.

Lemma 2 shows that there exists a utility function U such that the data set D

is (P,U)-rationalizable if and only if, for all cycles C on G = (T, T × T ), which

satisfy P (rt − rt+ + bt+) > 0 for all for all nodes t, we have:∑
t∈C

p(rt − rt+ + bt+)− p(bt+) ≤ 0, (6)

with p(x) = ln(P (x)). We will show that this condition is satisfied if and only if

for all observations t, s, rs ≥ rt implies rs − bs ≥ rt − bt.

(⇒) Consider two observations t and s. If P (rt − rs + bs) = 0, then it must be

that rt − rs + bs ≤ 0, since P is strictly increasing. In particular:

rt ≤ rs − bs.

As bs ≥ 0, this implies rt ≤ rs and also rt−bt ≤ rs−bs. Similarly, if P (rs−rt+bs) =

0, we obtain rs ≤ rt and rs− bs ≤ rt− bt. So the result holds for both these cases.

Next, consider the case where both P (rt− rs + bs) > 0 and P (rs− rt + bt) > 0.

Without loss of generality, assume that rs ≥ rt. Then, given the cycle C =

{(t, s), (s, t)}, we must have (by (6)):

p(rt − rs + bs)− p(bs) + p(rs − rt + bt)− p(bt) ≤ 0

⇔p(rs − rt + bt)− p(bt) ≤ p(bs)− p(bs − (rs − rt)).

Given strict concavity of p, this can only hold if rs − rt + bt ≥ bs or, equivalently,

rs − bs ≥ rt − bt, as we needed to show.

(⇐) We work by induction on the length of the cycle C in order to show that

condition (6) is satisfied. If C has length 2, the proof is similar to the necessity

part above. Let us assume that the condition holds for all cycles up to length n−1

and consider a cycle of length n. Let t be the node of the cycle with the lowest

value of rt. Denote by C ′ the cycle where the edges (t−, t) and (t, t+) are removed
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and the edge (t−, t+) is added. Using this notation we have:∑
s∈C

p(rs − rs+ + bs+)− p(bs+) =
∑
s∈C′

(
p(rs − rs+ + bs+)− p(bs+)

)
+ p(rt− − rt + bt)− p(bt) + p(rt − rt+ + bt+)

− p(rt− − rt+ + bt+). (7)

Notice that P (rt− rt+ + bt+) being strictly positive implies also that P (rt−− rt+ +

bt+) > 0 since rt− ≥ rt. As such we can indeed take the logarithm.

The first term on the right hand side of (7) is negative by the induction hy-

pothesis. As such, it suffices to show that:

p(rt− − rt + bt)− p(bt) ≤ p(rt− − rt+ + bt+)− p(rt − rt+ + bt+). (8)

Define ∆ = rt− − rt ≥ 0 and set rt− − rt+ + bt+ = b̃ ≥ 0. Then, substituting into

(8) gives:

p(∆ + bt)− p(bt) ≤ p(b̃)− p(b̃−∆).

As p is strictly concave and strictly increasing, this holds whenever:

∆ + bt ≥ b̃

⇔rt− − rt + bt ≥ rt− − rt+ + bt+

⇔rt+ − bt+ ≥ rt − bt.

This is indeed the case, as rt+ ≥ rt.

Statement 2: U is strictly log-concave.

This proof is readily analogous to the proof of statement 1.

A.3 Proof of Theorem 3

We first state some preliminary results.
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Preliminary results

Lemma 3. Let (zt, yt)Tt=1 be a collection of numbers zt, yt ∈ R. Then, the following
statements are equivalent:

1. For all cycles C in G = (T, T ×T ) where the values yt are not equal over all

nodes t in C, we have that:∑
t∈C

zt(yt+ − yt) > 0.

2. For all t, s we have that:

yt > ys ⇒ zt < zs.

Proof. (1 ⇒ 2) Suppose the condition in statement 1 holds. Then, given a cycle

C = {(t, s), (s, t)} we have that, if yt 6= ys:

zt(ys − yt) + zs(yt − ys) > 0,

↔(zs − zt)(yt − ys) > 0.

As such, yt > ys implies zt < zs, as we wanted to show.

(2⇒ 1) We use induction on the length of the cycle C. For a cycle of length 2 the

proof is similar to the first part of the proof. Assume that the equivalence holds

for all cycles up to length n − 1 and consider a cycle C of length n. If the cycle

C = {(t1, t2), (t2, t3), . . . (tn, t1)} contains two nodes ti, tj (i < j) with yti = ytj ,

then we can break up C into two cycles of smaller length. In particular, we have

the smaller cycles:

C1 = {(t1, t2), . . . , (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)}, and

C2 = {(ti, ti+1), (ti+1, ti+2), . . . (tj−2, tj−1), (tj−1, ti)}.

Also, as yti = ytj we have:∑
t∈C

zt(yt+ − yt) =
∑
t∈C1

zt(yt+ − yt) +
∑
t∈C2

zt(yt+ − yt).
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By the induction hypothesis, the sum on the right hand side is greater than 0, so

the sum on the left is then also greater than 0.

Next, we consider the case where there is a cycle C of length n and where, for

all nodes t, s ∈ C, yt 6= ys. Let t be the node in C with the smallest value of yt,

and let C ′ be the cycle obtained from C by removing the edges (t−, t), (t, t+) and

adding the edge (t−, t+). Then,∑
s∈C

zs(ys+ − ys) =
∑
s∈C′

zs(ys+ − ys),

+ zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt−).

The first expression on the right hand side is strictly greater than zero by the

induction hypothesis. As such, it suffices to show that,

zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt−) ≥ 0

↔zt−(yt − yt−) + zt(yt+ − yt)− zt−(yt+ − yt)− zt−(yt − yt−) ≥ 0

↔(zt − zt−)(yt+ − yt) ≥ 0.

By assumption, we have yt+ > yt, so the second part of the product is strictly

positive. In addition, we have yt− > yt so zt− < zt by statement 2 of the lemma,

which shows that the first part of the product is also strictly positive.

Lemma 4. Let (zt, yt)Tt=1 be a collection of numbers zt, yt ∈ R and let C be a cycle

in G = (T, T × T ). Then, there exists a collection of cycles C such that:

1. For all C̃ ∈ C and all nodes t, s ∈ C̃ we have yt 6= ys,

2.
∑

s∈C z
s(ys+ − ys) =

∑
C̃∈C

∑
s∈C̃ z

s(ys+ − ys),

3.
∑

s∈C 1[ys 6= ys+] =
∑

C̃∈C
∑

s∈C̃ 1[ys 6= ys+].

Proof. Consider a cycle C in G = (T, T ×T ). We will build the collection C in two

steps. First, we remove from C all edges (t, s) where yt = ys. In order to do this,

if C contains an edge (t, s) where yt = ys we construct a new cycle C by deleting

the edges (t−, t) and (t, s) and adding the edge (t−, s). The resulting cycle C ′ has
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the feature that: ∑
s∈C

zs(ys+ − ys) =
∑
s∈C′

zs(ys+ − ys),

and: ∑
s∈C

1[ys+ 6= ys] =
∑
s∈C′

1[ys+ 6= ys].

This process can be repeated until we finally arrive at a cycle C̃ such that, for any

edge (t, s) we have yt 6= ys together with:∑
s∈C

zs(ys+ − ys) =
∑
s∈C̃

zs(ys+ − ys),

and: ∑
s∈C

1[ys+ 6= ys] =
∑
s∈C̃

1[ys+ 6= ys].

We take C̃ as a starting point of the second step. If C̃ contains no two nodes t

and s (not connected by an edge) such that yt = ys, then we set C = {C̃}. Else,

let C̃ = {(t1, t2), . . . , (tn, t1)} be such that, for at least two nodes ti, tj (i < j) in

C, we have yti = ytj . We decompose C̃ into two new cycles C̃1 and C̃2, in the

following way:

C̃1 = {(t1, t2), . . . (ti−2, ti−1), (ti−1, tj), (tj, tj+1), . . . , (tn, t1)} and

C̃2 = {(ti, ti+1), . . . (tj−1, tj)}.

Notice that C̃1 and C̃2 satisfy:∑
s∈C̃

zs(ys+ − ys) =
∑
s∈C̃1

zs(ys+ − ys) +
∑
s∈C̃2

zs(ys+ − ys),

and: ∑
s∈C̃

1[ys+ 6= ys] =
∑
s∈C̃1

1[ys+ 6= ys] +
∑
s∈C̃2

1[ys+ 6= ys].

Again we can repeat this process over and over until we obtain a collection C of
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cycles such that, for all nodes ti, tj ∈ C̃ ∈ C, we have yti 6= ytj . Moreover:∑
(t,t+)∈C

zs(ys+ − ys) =
∑
C̃∈C

∑
(t,t+)∈C

zs(ys+ − ys),

and: ∑
(t,t+)∈C

1[yt 6= yt+] =
∑
C̃∈C

∑
(t,t+)∈C̃

1[yt 6= yt+],

which we wanted to show.

Lemma 5. Let (zt, yt)Tt=1 be a collection of numbers such that zt, yt ∈ R. Then,

the following statements are equivalent.

1. For all cycles C in G = (T, T ×T ) where the values yt are not all equal over

the nodes t of C, we have that:∑
t∈C

zt(yt+ − yt) > 0.

2. There exist numbers ut such that, for all t, s:

ut − us ≤ zs(yt − ys),

with a strict inequality if yt 6= ys.

Proof. (2 ⇒ 1) This is easily obtained by summing the inequality in statement 2

over all edges (t, t+) of the cycle C.

(1⇒ 2) Let M be the collection of all cycles in G = (T, T × T ) such that, for all

M ∈M and all nodes t, s in M , yt 6= ys. Notice that any cycle in M can have at

most |T | nodes, so the number of elements in M is finite.

Given that there are only finitely many cycles in M, there should exist an ε

such that, for all M ∈M, ∑
s∈M

zs(ys+ − ys) > ε|M |,
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where |M | is the number of nodes in M .

Now, fix a node m and let Pt denote the collection of all finite paths in G =

(T, T × T ) from m to node t. Define:

ut = min
π∈Pt

∑
s∈π

zs(ys+ − ys)− ε1[ys+ 6= ys].

In order to show that this is well-defined, we need to show that there are no cycles

C in G = (T, T × T ) such that:∑
s∈C

zs(ys+ − ys)− ε1[ys+ 6= ys] < 0.

If ys+ = ys for all s ∈ C, then this is obviously satisfied. Else we have, by Lemma 4,

a collection of cycles in M such that:∑
s∈C

zs(ys+ − ys) =
∑
M∈C

∑
s∈M

zs(ys+ − ys),

and: ∑
s∈C

1[ys+ 6= ys] =
∑
M∈C

∑
s∈M

1[ys+ 6= ys].

Then: ∑
s∈C

zs(ys+ − ys)− ε1[ys+ − ys],

=
∑
M∈C

∑
s∈M

zs(ys+ − ys)− ε
∑
M∈C

∑
s∈M

1[ys+ 6= ys],

=
∑
M∈C

(∑
s∈M

zs(ys+ − ys)− ε1[ys+ 6= ys]

)
> 0,

by assumption on the value of ε. As such, we can restrict the minimization over

the set of all paths without cycles, which shows that ut is bounded from below and

therefore well-defined. Now, for all paths from m to t we can define a path from

m to s by adding the edge (t, s). This means that,

us ≤ ut + zt(ys − yt)− ε1[ys 6= yt],
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so us ≤ ut + zt(ys − yt) and us < ut + zt(ys − yt) if ys 6= yt as we wanted to

show.

Main part of the proof of Theorem 3 (⇒) First, notice that, by continuity

and monotonicity of P and U , we have that P (bt) > 0 and U(rt−bt) > 0. As such,

the choice bt also optimizes the log of P (b)U(rt − b), denoted by p(b) + u(rt − b).
This objective function is strictly concave, so a solution has to satisfy the first

order condition:

∂pt − ∂ut = 0,

where ∂pt is a suitable supergradient of p(bt) and ∂ut is a suitable supergradient

of u(rt − bt), and where we use that 0 < bt < r.8 Then, strict concavity of u and

p gives:

p(bt)− p(bs) ≤ ∂ps(bt − bs) = ∂us(bt − bs), (9)

u(rt − bt)− u(rs − bs) ≤ ∂us
[
(rt − bt)− (rs − bs)

]
, (10)

where the inequality (9) is strict if bs 6= bt and the inequality (10) is strict if

rt − bt 6= rs − bs. If we exchange t and s in conditions (9) and (10) and add them

together, we obtain:

0 ≤ (∂us − ∂ut)(bt − bs), (11)

0 ≤ (∂us − ∂ut)
[
(rt − bt)− (rs − bs)

]
, (12)

where (11) is strict if bt 6= bs and (12) is strict if rt − bt 6= rs − bs. If bt > bs, then,

for (11) to hold, we must have that ∂ut < ∂us, which implies we need in turn that

rt − rs ≥ bt − bs to satisfy (12). As such, we obtain that rs ≥ rt implies bs ≥ bt.

Next, if rt − bt > rs − bs, then for (12) to hold, we must have that ∂ut < ∂us,

which implies we need in turn that bt ≥ bs to satisfy (11). As such we obtain

rt − rs > bt − bs ≥ 0 and thus also rt > rs. Again, by contraposition, we can

conclude that rs ≥ rt implies rs − bs ≥ rt − bt.
8 For the definition and basic properties of supergradients please see Rockafellar (1970).
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(⇐) Taking the contraposition, we have that bt > bs implies rt > rs and rt − bt >
rs − bs implies rt > rs. Then, by combining Lemmata 3 and 5 we have that there

are numbers ut and pt such that, for all observations t, s:

ut − us ≤ rs
[
(rt − bt)− (rs − bs)

]
, (13)

pt − ps ≤ rs(bt − bs), (14)

where the inequality (13) is strict if rt − bt 6= rs − bs, and the inequality (14) is

strict if bt 6= bs. As shown in Matzkin and Richter (1991), these inequalities imply

the existence of continuous, strictly increasing and strictly concave functions ũ and

p such that, for all t:

ũ(rt − bt) = ut, and p(bt) = pt.

and rt is a supergradient of u(rt − bt) and p(bt). Define the function:

u(x) = min{ln(αx), ũ(x)},

where we choose α > 0 such that, for all t:

ln(α(rt − bt)) > ut.

The function u(x) is still strictly concave, strictly monotone and continuous. In

addition, for all t we have that u(rt−bt) = ut and rt is a supergradient of u(rt−bt),
but now we also have that limx→0 ũ(x) = −∞. Define:

U(x) = exp(u(x)),

and:

P (b) = exp (p(b)− p(r)) .

Then, U is strictly increasing, strictly log-concave and U(0) = 0 and P is between

0 and 1, strictly increasing and strictly log-concave on [0, r].

For these definitions of U and P , let us show that the data set D = (rt, bt)Tt=1

is (P,U)-rationalizable. That is, that bt maximizes p(b) + u(r− b). We know that
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P (bt)U(rt − bt) > 0, so we only need to consider values b < rt with P (b) > 0. By

concavity of p and u we have, for all such b:

p(b) + u(rt − b)−
(
p(bt)− u(rt − bt)

)
≤ rt(b− bt) + rt

[
(rt − b)− (rt − bt)

]
= 0,

as we needed to show.

B When U is unknown and P can be estimated

In this appendix, we show how to use the characterization in statement 1 of The-

orem 1 to derive a statistical test of rationalizability when U is unknown, but the

empirical analyst can construct an estimate of the cdf P from a finite sample of

observations.

Let us assume that we have a random sample of m values (b̂j)j≤m, drawn i.i.d.

from a cdf G. The sample used for the cdf of G is a separate data set than the

one used for the revealed preference test. We assume that the cdf G can be linked

to the cdf P by a known function Γ : [0, 1]→ [0, 1] such that, for all b ∈ [0, r],

P (b) = Γ (G(b)) .

This function Γ will generally depend on the specific setting at hand. For instance,

in a first price auctions we can take G to represent the distribution of bids of a

random participant in the auction, while P equals the distribution of the highest

bid among all participants different from the DM. Then, for an auction with k+ 1

randomly drawn participants in total (i.e. k participants different from the DM)

and independent bids, we get:

P (b) = (G(b))k,

which yields the function Γ(x) = xk.9 Of course, if it is possible to directly obtain

i.i.d. draws from the distribution P , we can set Γ equal to the identity function.

9The sample (b̂j)j≤m of bids can then be obtained via m repetitions of the following procedure.
Draw a random subject from the population, endow this subject with a random reward and ask
her for her optimal bid.
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Given the finite sample (b̂j)j≤m, it is possible to construct an estimator of the

cdf G by using the empirical distribution function:

Gm(b) =
1

m

m∑
j=1

1[b̂j ≤ b],

where 1[.] is the indicator function that equals 1 if the premise is true and zero

otherwise. This estimator has a small sample bias equal to:

εm(b) = Gm(b)−G(b).

Next, we recall that our characterization in statement 1 of Theorem 1 only requires

us to evaluate the distribution P (and hence G) at a finite number of values

rt − rs + bs, where P (rt − rs + bs) > 0 for t, s ∈ {1, . . . , T}. From now on, we will

assume that G(rt − rs + bs) > 0 for all such t, s. Correspondingly, we construct a

finite vector of errors εm, with entries:10

(εm)t,s = Gm(rt − rs + bs)−G(rt − rs + bs).

The vector
√
mεm has an asymptotic distribution that is multivariate normal with

mean zero and variance-covariance matrix Ω, where:

Ω(t′,s′),(t,s) =

{
G(rt − rs + bs)(1−G(rt

′ − rs′ + bs
′
)) if rt − rs + bs ≤ rt

′ − rs′ + bs
′

G(rt
′ − rs′ + bs

′
)(1−G(rt − rs + bs)) if rt

′ − rs′ + bs
′
< rt − rs + bs

.

Standard results yield:

mε′m(Ω)−1εm ∼a χ2(K)),

where ∼a denotes convergence in distribution and K is the size of the vector ε.11

Of course, in practice we do not observe the matrix Ω. We can approximate it

10For simplicity, we assume that all values rt − rs + bs are distinct. Obviously, this does not
affect the core of our argument.

11See, for example, Sepanski (1994).
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using the finite sample analogue Ω̂m, where:

(Ω̂m)(t′,s′),(t,s) =

{
Gm(rt − rs + bs)

(
1−Gm(rt

′ − rs′ + bs
′
)
)

if rt − rs + bs ≤ rt
′ − rs′ + bs

′

Gm(rt
′ − rs′ + bs

′
) (1−Gm(rt − rs + bs)) if rt

′ − rs′ + bs
′
< rt − rs + bs

.

Because Ω̂m is a consistent estimate of Ω, it follows that:

mε′(Ω̂m)−1ε ∼a χ2(K).

We can use this last result as a basis for an asymptotic test of rationalizability.

Specifically, consider the null hypothesis:

H0 :

{
there is a utility function U such that the data set

D = (rt, bt)Tt=1 is (P,U)-rationalizable.

}
.

To empirically check this hypothesis, we can solve the following minimization

problem:

OP.I: Zm = inf
em,Ĝt,s∈[0,1],Ut>0

me′m(Ω̂m)−1em,

s.t. ∀t, s : et,s = Gm(rt − rs + bs)− Ĝt,s, (15)

Γ(Ĝt,t)U
t ≥ Γ(Ĝt,s)U

s, (16)

Γ(Ĝt,s) < Γ(Ĝt′,s′) for all rt − rs + bs < rt
′ − rs′ + bs

′
. (17)

If the hypothesis H0 holds true, the above problem has a feasible solution with:

Ĝt,s = G(rt − rs + bs).

As such, we must have:

Zm ≤ mε′m(Ω̂m)−1εm.

Let us denote by cα the (1−α)×100th percentile of the χ2(K) distribution. Then,

if H0 holds, we obtain:

lim
m→∞

Pr[Zm > cα] ≤ lim
m→∞

Pr
[
mε′m(Ω̂m)−1εm > cα

]
= α,

41



which implies that we can construct an asymptotic test of H0 by solving problem

OP.I for the given data set and subsequently verify whether its solution value

exceeds cα.

Two concluding remarks are in order. First, our empirical hypothesis test is

conservative in nature when compared to the theoretical test (based on Theorem 1)

that uses the true distributions P and G. Second, implementing our hypothesis

test in principle requires solving the minimization problem OP.I, which may be

computationally difficult due to the constraints (16)-(17) that are nonlinear. For

some particular instances of the function Γ, however, it may be possible to convert

this problem into a problem that can be solved by standard algorithms.12

12See the working paper version Cherchye, Demuynck, De Rock, and Freer (2019) of this paper
for an application of this procedure to a first price auction setting.
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